Zscaler Workload Segmentation MCP Server
Create a powerful Model Context Protocol (MCP) server for Zscaler Workload Segmentation in minutes with our AI Gateway. This guide walks you through setting up seamless workload microsegmentation integration with enterprise-grade security and instant OAuth authentication.
About Zscaler Workload Segmentation API
Zscaler Workload Segmentation provides identity-based microsegmentation for workloads across data centers and clouds. It enables zero trust security by creating software-defined perimeters around applications, preventing lateral movement and reducing attack surface without network changes.
Key Capabilities
- Identity-Based Segmentation: Workload fingerprinting
- Application Dependency Mapping: Auto-discovery
- Policy Simulation: Risk-free policy testing
- Zero Trust Architecture: Default deny policies
- Multi-Environment: Cloud and on-premises
- Agentless Option: Network-based protection
- DevOps Integration: CI/CD pipeline support
- Compliance: Regulatory requirement support
API Features
- Workload API: Identity management
- Policy API: Segmentation rules
- Discovery API: App dependency mapping
- OAuth 2.0: Secure authentication
- Simulation API: Policy testing
- Analytics API: Traffic insights
- Compliance API: Audit support
- Integration API: DevOps tools
What You Can Do with Zscaler Workload Segmentation MCP Server
The MCP server transforms Workload Segmentation API into a natural language interface, enabling AI agents to:
Workload Identity Management
-
Workload Discovery
- "Discover all workloads"
- "Identify unprotected services"
- "Find workload dependencies"
- "Map application topology"
-
Identity Assignment
- "Create workload identities"
- "Tag by application tier"
- "Group by business unit"
- "Classify by data sensitivity"
-
Fingerprinting
- "Generate workload fingerprints"
- "Verify workload identity"
- "Track identity changes"
- "Monitor drift"
Application Dependency Mapping
-
Auto-Discovery
- "Map application communications"
- "Discover service dependencies"
- "Identify data flows"
- "Track API calls"
-
Visualization
- "Show application topology"
- "Display traffic patterns"
- "Highlight critical paths"
- "Map east-west traffic"
-
Dependency Analysis
- "Find single points of failure"
- "Identify redundant paths"
- "Assess impact radius"
- "Calculate dependencies"
Microsegmentation Policies
-
Policy Creation
- "Create zero trust policies"
- "Build allow lists"
- "Define service boundaries"
- "Set communication rules"
-
Policy Templates
- "Apply PCI compliance template"
- "Use three-tier app template"
- "Deploy microservices policies"
- "Implement DMZ rules"
-
Granular Controls
- "Control by port/protocol"
- "Restrict by process"
- "Limit by user context"
- "Filter by metadata"
Policy Simulation
-
What-If Analysis
- "Simulate policy changes"
- "Preview blocked connections"
- "Test before deployment"
- "Validate rules"
-
Impact Assessment
- "Show affected workloads"
- "Calculate disruption risk"
- "Identify dependencies"
- "Measure blast radius"
-
Safe Deployment
- "Stage policy rollout"
- "Monitor mode first"
- "Gradual enforcement"
- "Rollback capability"
Traffic Analytics
-
Flow Analysis
- "Show traffic patterns"
- "Monitor data volumes"
- "Track connection counts"
- "Analyze protocols"
-
Anomaly Detection
- "Detect unusual traffic"
- "Find policy violations"
- "Identify new connections"
- "Monitor behavioral changes"
-
Performance Metrics
- "Measure latency impact"
- "Track throughput"
- "Monitor connection health"
- "Assess overhead"
Threat Prevention
-
Lateral Movement
- "Block unauthorized connections"
- "Prevent service hopping"
- "Stop attack propagation"
- "Contain breaches"
-
Zero Day Protection
- "Default deny stance"
- "Whitelist only approach"
- "Process-level control"
- "Behavior monitoring"
-
Breach Containment
- "Isolate compromised workloads"
- "Emergency lockdown"
- "Quarantine mode"
- "Forensic preservation"
Compliance Management
-
Regulatory Compliance
- "Enforce PCI segmentation"
- "Meet HIPAA requirements"
- "Satisfy SOX controls"
- "GDPR data isolation"
-
Audit Support
- "Generate compliance reports"
- "Document segmentation"
- "Prove policy enforcement"
- "Track changes"
-
Continuous Compliance
- "Monitor compliance drift"
- "Alert on violations"
- "Auto-remediate issues"
- "Maintain evidence"
DevOps Integration
-
CI/CD Pipeline
- "Integrate with Jenkins"
- "GitOps workflows"
- "Infrastructure as Code"
- "Policy as Code"
-
Container Security
- "Segment Kubernetes pods"
- "Protect microservices"
- "Secure service mesh"
- "Container runtime protection"
-
Automation
- "Auto-apply policies"
- "Dynamic segmentation"
- "Scaling support"
- "Self-healing rules"
Prerequisites
- Access to Cequence AI Gateway
- Zscaler Workload Segmentation license
- API credentials
- Workload agents deployed (or agentless setup)
Step 1: Generate API Credentials
1.1 Access Workload Segmentation Console
- Log in to Zscaler Workload Segmentation
- Navigate to Settings > API Keys
- Click Generate New Key
1.2 Create API Key
- Configure key:
- Name: "AI Gateway Workload MCP"
- Description: "Microsegmentation automation"
- Permissions: Select required access
1.3 Set Permissions
Select permissions:
- Workloads: Read/Write
- Policies: Read/Write
- Analytics: Read
- Simulation: Execute
- Compliance: Read
1.4 Save Credentials
- Click Generate
- Copy API Key
- Copy API Secret
- Note Organization ID
Step 2-4: Standard Setup
Follow standard steps to access AI Gateway, find Zscaler Workload Segmentation API, and create MCP server.
Step 5: Configure API Endpoints
- Base URL:
https://api.workload.zscaler.com
- Select endpoints:
- Workload endpoints
- Policy endpoints
- Analytics endpoints
- Simulation endpoints
- Click Next
Step 6: MCP Server Configuration
- Name: "Zscaler Workload Segmentation"
- Description: "Zero trust workload protection"
- Configure production mode
- Click Next
Step 7: Configure Authentication
- Authentication Type: API Key
- Header Name:
X-API-Key
- Secret Header:
X-API-Secret
- Enter credentials
- Add Organization ID
Available Workload Segmentation API Scopes
Workload Management
-
Workload Operations
- Workload discovery
- Identity management
- Fingerprinting
- Metadata tagging
-
Application Mapping
- Dependency discovery
- Traffic analysis
- Service mapping
- Topology visualization
Policy Management
-
Segmentation Policies
- Policy creation
- Rule management
- Template library
- Enforcement control
-
Policy Simulation
- What-if analysis
- Impact assessment
- Testing mode
- Validation reports
Analytics & Compliance
-
Traffic Analytics
- Flow monitoring
- Anomaly detection
- Performance metrics
- Behavioral analysis
-
Compliance
- Audit reports
- Compliance checks
- Evidence collection
- Violation tracking
Recommended Scope Combinations
For Security Teams:
Workload Operations (Read)
Policy Management (Read/Write)
Policy Simulation (Execute)
Analytics (Read)
Compliance (Read)
For DevOps Teams:
Workload Operations (Read/Write)
Policy Management (Read/Write)
Policy Simulation (Execute)
Analytics (Read)
Integration (Read/Write)
Step 8-10: Complete Setup
Configure security, choose deployment, and deploy.
Using Your Zscaler Workload Segmentation MCP Server
With Claude Desktop
{
"servers": {
"zscaler-workload": {
"url": "your-mcp-server-url",
"auth": {
"type": "api_key",
"api_key": "your-api-key",
"api_secret": "your-api-secret",
"org_id": "your-org-id"
}
}
}
}
Natural Language Commands
- "Map dependencies for payment processing app"
- "Create PCI compliance segmentation policy"
- "Simulate blocking all database access"
- "Show anomalous traffic in production"
- "Isolate compromised web server immediately"
API Integration Example
// Initialize MCP client
const mcpClient = new MCPClient({
serverUrl: 'your-mcp-server-url',
auth: {
type: 'api_key',
apiKey: 'your-api-key',
apiSecret: 'your-api-secret',
orgId: 'your-org-id'
}
});
// Discover workloads
const workloadDiscovery = await mcpClient.zscaler.workload.discoverWorkloads({
environments: ['production', 'staging'],
platforms: ['aws', 'vmware', 'kubernetes'],
autoClassify: true
});
console.log(`Discovered ${workloadDiscovery.total} workloads`);
console.log("\nWorkload Summary:");
for (const env of workloadDiscovery.environments) {
console.log(`\n${env.name}:`);
console.log(` Total: ${env.workloadCount}`);
console.log(` Protected: ${env.protectedCount}`);
console.log(` Unprotected: ${env.unprotectedCount}`);
}
// Application dependency mapping
const appDependencies = await mcpClient.zscaler.workload.mapApplicationDependencies({
applicationName: "E-Commerce Platform",
depth: 3, // Levels of dependency to explore
includeExternal: true,
timeRange: 'last_7_days'
});
console.log(`\nApplication: ${appDependencies.name}`);
console.log(`Total Components: ${appDependencies.components.length}`);
console.log(`External Dependencies: ${appDependencies.externalServices.length}`);
// Visualize dependencies
const topology = appDependencies.generateTopology();
console.log("\nCritical Paths:");
for (const path of topology.criticalPaths) {
console.log(`${path.source} -> ${path.destination}`);
console.log(` Protocol: ${path.protocol}`);
console.log(` Port: ${path.port}`);
console.log(` Volume: ${path.trafficVolume} MB/day`);
}
// Create microsegmentation policy
const segmentationPolicy = await mcpClient.zscaler.workload.createPolicy({
name: "Three-Tier App Segmentation",
description: "Isolate web, app, and database tiers",
template: "three_tier_application",
tiers: {
web: {
workloads: ["web-server-*"],
allowedInbound: [
{ source: "internet", ports: [443], protocol: "tcp" }
],
allowedOutbound: [
{ destination: "app-tier", ports: [8080], protocol: "tcp" }
]
},
app: {
workloads: ["app-server-*"],
allowedInbound: [
{ source: "web-tier", ports: [8080], protocol: "tcp" }
],
allowedOutbound: [
{ destination: "db-tier", ports: [5432], protocol: "tcp" }
]
},
database: {
workloads: ["db-server-*"],
allowedInbound: [
{ source: "app-tier", ports: [5432], protocol: "tcp" }
],
allowedOutbound: []
}
},
defaultAction: "DENY"
});
// Simulate policy before applying
const simulation = await mcpClient.zscaler.workload.simulatePolicy({
policyId: segmentationPolicy.id,
duration: '1_hour',
compareWithCurrent: true
});
console.log("\nPolicy Simulation Results:");
console.log(`Flows that would be blocked: ${simulation.blockedFlows}`);
console.log(`Flows that would be allowed: ${simulation.allowedFlows}`);
console.log(`Potential service impact: ${simulation.impactScore}/10`);
if (simulation.blockedFlows > 0) {
console.log("\nBlocked Connections:");
for (const flow of simulation.blockedConnections.slice(0, 5)) {
console.log(`${flow.source} -> ${flow.destination}:${flow.port}`);
console.log(` Reason: ${flow.blockReason}`);
console.log(` Frequency: ${flow.connectionCount} connections/hour`);
}
}
// Apply policy with monitoring mode first
if (simulation.impactScore < 3) {
const deployment = await mcpClient.zscaler.workload.deployPolicy({
policyId: segmentationPolicy.id,
mode: 'monitor', // Start in monitor mode
rolloutStrategy: {
type: 'gradual',
stages: [
{ percentage: 10, duration: '1h' },
{ percentage: 50, duration: '2h' },
{ percentage: 100, duration: '24h' }
]
},
alertOnViolation: true
});
console.log(`Policy deployed in monitor mode: ${deployment.id}`);
}
// Traffic analytics
const trafficAnalytics = await mcpClient.zscaler.workload.analyzeTraffic({
timeRange: 'last_24_hours',
groupBy: ['application', 'environment'],
metrics: ['volume', 'connections', 'uniqueFlows', 'protocols']
});
console.log("\nTraffic Analysis:");
for (const app of trafficAnalytics.applications) {
console.log(`\n${app.name}:`);
console.log(` Total Volume: ${app.volume / 1024 / 1024 / 1024} GB`);
console.log(` Connections: ${app.connectionCount}`);
console.log(` Unique Flows: ${app.uniqueFlows}`);
console.log(` Top Protocols: ${app.protocols.map(p => p.name).join(', ')}`);
}
// Anomaly detection
const anomalies = await mcpClient.zscaler.workload.detectAnomalies({
baseline: 'last_30_days',
sensitivity: 'medium',
types: ['new_connections', 'traffic_spike', 'protocol_change', 'behavioral']
});
if (anomalies.count > 0) {
console.log(`\nDetected ${anomalies.count} anomalies:`);
for (const anomaly of anomalies.items) {
console.log(`\n${anomaly.type}: ${anomaly.description}`);
console.log(` Severity: ${anomaly.severity}`);
console.log(` Affected: ${anomaly.affectedWorkloads.join(', ')}`);
console.log(` Recommendation: ${anomaly.recommendation}`);
if (anomaly.severity === 'critical') {
// Auto-respond to critical anomalies
await respondToAnomaly(anomaly);
}
}
}
// Compliance validation
const complianceCheck = await mcpClient.zscaler.workload.validateCompliance({
framework: 'PCI-DSS',
scope: {
environments: ['production'],
tags: { 'data-classification': 'cardholder' }
}
});
console.log(`\nPCI-DSS Compliance Check:`);
console.log(`Overall Score: ${complianceCheck.score}%`);
console.log(`Segmentation Requirements: ${complianceCheck.segmentationStatus}`);
if (complianceCheck.violations.length > 0) {
console.log("\nViolations Found:");
for (const violation of complianceCheck.violations) {
console.log(`- ${violation.requirement}: ${violation.description}`);
console.log(` Affected Resources: ${violation.resources.length}`);
console.log(` Remediation: ${violation.remediation}`);
}
}
// Emergency breach response
const breachResponse = async (compromisedWorkload) => {
// Immediate isolation
const isolation = await mcpClient.zscaler.workload.isolateWorkload({
workloadId: compromisedWorkload,
mode: 'quarantine',
allowedConnections: [
{ destination: 'security-tools', ports: [443], purpose: 'forensics' }
]
});
// Ring-fence connected workloads
const connectedWorkloads = await mcpClient.zscaler.workload.getConnectedWorkloads({
workloadId: compromisedWorkload,
depth: 2
});
for (const workload of connectedWorkloads) {
await mcpClient.zscaler.workload.applyPolicy({
workloadId: workload.id,
policy: 'heightened-security',
duration: '48h'
});
}
// Generate incident report
const report = await mcpClient.zscaler.workload.generateIncidentReport({
workloadId: compromisedWorkload,
includeForensics: true
});
return {
isolation: isolation,
affectedCount: connectedWorkloads.length,
report: report
};
};
// DevOps integration
const cicdIntegration = await mcpClient.zscaler.workload.configureCICD({
platform: 'jenkins',
stages: [
{
name: 'pre-deployment',
actions: ['validate_workload_identity', 'check_policy_compliance']
},
{
name: 'deployment',
actions: ['apply_segmentation_policy', 'enable_monitoring']
},
{
name: 'post-deployment',
actions: ['verify_connectivity', 'run_security_tests']
}
],
policyAsCode: {
repository: 'https://github.com/company/segmentation-policies',
branch: 'main',
path: '/policies'
}
});
// Real-time monitoring
const monitor = await mcpClient.zscaler.workload.startMonitoring({
events: [
'policy_violation',
'new_workload',
'configuration_change',
'anomaly_detected',
'compliance_drift'
],
filters: {
environments: ['production'],
severity: ['high', 'critical']
}
});
monitor.on('event', async (event) => {
console.log(`Event: ${event.type}`);
console.log(`Details: ${event.description}`);
console.log(`Affected: ${event.affectedResources}`);
if (event.type === 'policy_violation' && event.severity === 'critical') {
await handlePolicyViolation(event);
}
});
Common Use Cases
Application Segmentation
- Multi-tier application isolation
- Microservices protection
- Database segmentation
- API gateway security
Compliance
- PCI DSS segmentation
- HIPAA data isolation
- SOX controls
- GDPR compliance
DevSecOps
- CI/CD integration
- Policy as Code
- Automated deployment
- Container security
Incident Response
- Breach containment
- Workload isolation
- Forensic analysis
- Recovery procedures
Security Best Practices
-
Zero Trust Implementation:
- Default deny policies
- Least privilege access
- Identity verification
- Continuous validation
-
Policy Management:
- Test before enforce
- Gradual rollout
- Monitor mode first
- Regular reviews
-
Operational Security:
- Anomaly monitoring
- Change tracking
- Audit logging
- Incident response
Troubleshooting
Common Issues
-
Discovery Problems
- Verify agent deployment
- Check network visibility
- Review workload tags
- Validate credentials
-
Policy Issues
- Test in simulation
- Check rule conflicts
- Verify workload identity
- Review dependencies
-
Performance Impact
- Monitor latency
- Check CPU usage
- Optimize rules
- Review logging
Getting Help
- Documentation: AI Gateway Docs
- Support: support@cequence.ai
- Zscaler Support: help.zscaler.com